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1. Short reminder on GWAS



Goal of Genome-wise association studies (GWAS)

� Goal: Discover gene mutations linked to a disease.

� GWAS will not provide: causality relations or biological
understanding of a disease.

� Applications to common diseases:
I Inflammatory Bowel Diseases

I Auto-immune diseases

I Metabolic diseases (T2 diabetes, obesity, BMI)

I Multiple sclerosis

I Cancer
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The CD/CV hypothesis

� Common diseases are partly caused by common variants

� Consequence: each mutation can only have a small effect

Source: Bush et al (2012)
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Linkage disequilibrium

Linkage disequilibrium (LD): correlation between close-by alleles on
the genome

Source: Bush et al (2012)
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Linkage disequilibrium

Idea of using single nucleotide polymorphisms (SNPs):

� SNP: Single nucleotide polymorphism

� There are many high-LD blocks on the genome

� We can use SNPs as markers of an LD block
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GWAS

� Gather n ∼ 103 individuals

� Observe the phenotype:
I quantitative (BMI, cholesterol, height)

I or qualitative (case-control for common disease).

� Observe the genotype of p ∼ 106 SNPs

Source: Ikram et al (2010)
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Epistasis and interactions between SNPs

� Epistasis: “The masking of the effects of one variant by another”
(Bateson 1909).

� Examples

(a) (b)

Examples of biological causes for epistasis (Source: Lehner 2011)

� The genetic mutations are in interaction

� Need to consider SNPs jointly
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The statistical problem

We do feature selection with:

�
p
n ∼ 1000

� Correlation between features (SNPs)

� Interaction between features

Very small statistical power

7



The statistical problem

We do feature selection with:

�
p
n ∼ 1000

� Correlation between features (SNPs)

� Interaction between features

Very small statistical power

7



The statistical problem

We do feature selection with:

�
p
n ∼ 1000

� Correlation between features (SNPs)

� Interaction between features

Very small statistical power

7



The statistical problem

We do feature selection with:

�
p
n ∼ 1000

� Correlation between features (SNPs)

� Interaction between features

Very small statistical power

7



2. Set covering machines for SNPs discovery



Encoding of SNP alleles

Each SNP has value ∈ {aa, aA,AA}.

Genotype Dominant Recessive Allelic dosage One-hot
aa 0 0 0 100
aA 1 0 1 010
AA 1 1 2 001

We will use one-hot encoding → binary features

8



Encoding of SNP alleles

Each SNP has value ∈ {aa, aA,AA}.

Genotype Dominant Recessive Allelic dosage One-hot
aa 0 0 0 100
aA 1 0 1 010
AA 1 1 2 001

We will use one-hot encoding → binary features

8



Setting of the set covering machine (SCM)

� yi ∈ {0, 1} (case/control GWAS)

� xi,j ∈ {0, 1} (one-hot encoding)

� p� n with true model assumed to be very sparse

� SCM learns a boolean function of the features:

f(x) =
∧
j∈R

hj(x),

where R ∈ is the set of rules to learn.

� Here a rules hj is the one-hot encoding of a SNP.

� SCM only learns a conjunction of SNPs to explain the phenotype.
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The set covering problem (1/2)

Haussler algorithm:

� Assume there is a combination of features that perfectly classifies
the dataset: y =

∧
j∈R hj

� How to find the sparsest possible combination of features?

� Only consider rules that correctly classify all positive examples
(yi = 1).
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The set covering problem (2/2)

� Example: what conjunction of hjs equals y?

y h1 h2 h3 h4

N
(negative
examples)

0 0 0 1 1
0 1 0 0 1
0 1 1 0 0
0 1 1 1 0

P
(positive
examples)

1 1 1 1 1
1 1 1 1 1

� Smallest number of sets {1} , {1, 2} , {2, 3} , {3, 4} whose union
is {1, 2, 3, 4}.

� This is the set cover problem (NP hard)

� We use a greedy approach
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Set covering machine

We choose the rule with maximum usefulness:

Uh = |Ah| − q|Bh|,

Ah : negative examples correctly classified

Bh : positive examples uncorrectly classified

� We allow errors on positive examples

� q controls this error
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Set covering machine: example

Example (with q = 1):

y h1 h2 h3 h4

N

0 0 0 1 1
0 1 0 0 1
0 1 1 0 0
0 1 1 1 0

P 1 1 0 1 1
1 1 0 0 1

|Ah| 1 2 2 2

|Bh| 0 2 1 0

Uh 1 0 1 2

� R ← {h4}
� N ← N \ Ah4

� P ← P \ Bh4
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Set covering machine: example (2)

y h1 h2 h3

N 0 0 0 1
0 1 0 0

P 1 1 0 1
1 1 0 0

|Ah| 1 2 1

|Bh| 0 2 1

Uh 1 0 1
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Stopping criteria

� We have finished the job: N = ∅

� Early stopping: |R| ≥ s with parameter s ≥ 1

� There remains only useless rules: |Ah| = |Bh| = 0
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Computation time

� Each greedy step is fast to compute:
I Let IN be the (current) indices of the negative examples.

I |Ah| = |IN | −
∑

i∈IN
xi,j if h is the presence rule of feature j

I Similar for |Bh|.

� Overall complexity O (|R|ns)

� Limited memory usage
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Upper bound on the risk (1/2)

SCM is a sample compression algorithm

� Given a model f learnt by an SCM, there exist
I a set of individuals Z ∈ {1, · · · , n}
I a message string σ containing additional information,

such that h can be reconstructed from Z.

� Then there exists a bound on the risk

R(h) = E(x,y)∼D
[
1f(x)6=y

]
.

� Marchand and Sokolova (2006) established that:

P (∀S ∼ D,∀h,R(h) ≤ ε(h, S, δ)) ≥ 1− δ

I ε depends on Z and the of classif. errors made on S \ Z.
I ε does not depend on p.
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Upper bound on the risk (2/2)

Consequences:

� The bound does not depend on p: theoretical performance
guarantee

� It can be used for hyperparameter selection (Marchand et
Shawe-Taylor, 2002).
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Conclusion

� Set covering machine
I learns a boolean conjunction of SNPs

I runs fast

I does not suffer from p� n

� However there are other issues:
I Many SNPs can have same Uh: which one to choose?

I Only conjunctions of SNPs
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Thank you
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Appendix: Sample compression bound

ε(h, S, δ) = 1− exp

(
−1

n− |Z| − r

[
log

(
m

|Z|

)
+ log

(
m− |Z|

r

)
+

|h| log(2N (Z)) + log Ω

])

� with Ω = π6(|h|+1)2(r+1)2(|Z|+1)2

216δ ,

� where r is the number of classif. errors on S \ Z.
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