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1. Short reminder on GWAS



Goal of Genome-wise association studies (GWAS)

Goal: Discover gene mutations linked to a disease.

GWAS will not provide: causality relations or biological
understanding of a disease.

Applications to common diseases:
» Inflammatory Bowel Diseases

» Auto-immune diseases
» Metabolic diseases (T2 diabetes, obesity, BMI)
» Multiple sclerosis

» Cancer



The CD/CV othesis

Common diseases are partly caused by common variants

Consequence: each mutation can only have a small effect
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Linkage disequilibrium

Linkage disequilibrium (LD): correlation between close-by alleles on
the genome

Indirect Association
(LA J QH [T chromosome

Region of High Linkage
Disequilibrium

a a
Disease Risk Genotyped SNP
SNP

Source: Bush et al (2012)



Linkage disequilibrium

Idea of using single nucleotide polymorphisms (SNPs):
SNP: Single nucleotide polymorphism

There are many high-LD blocks on the genome

We can use SNPs as markers of an LD block



Gather n ~ 10% individuals

Observe the phenotype:
» quantitative (BMI, cholesterol, height)

» or qualitative (case-control for common disease).

Observe the genotype of p ~ 106 SNPs
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Epistasis and interactions between SNPs

Epistasis: “The masking of the effects of one variant by another”
(Bateson 1909).
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Epistasis and interactions between SNPs

Epistasis: “The masking of the effects of one variant by another”
(Bateson 1909).

Examples
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The genetic mutations are in interaction

Need to consider SNPs jointly



The statistical problem
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We do with:
% ~ 1000
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2. Set covering machines for SNPs discovery



Encoding of SNP alleles

Each SNP has value € {aa,aA, AA}.

Genotype ‘ Dominant Recessive  Allelic dosage  One-hot
aa 0 0 0 100
aA 1 0 1 010
AA 1 1 2 001




Encoding of SNP alleles

Each SNP has value € {aa,aA, AA}.

Genotype ‘ Dominant Recessive  Allelic dosage  One-hot

aa 0 0 0 100
aA 1 0 1 010
AA 1 1 2 001

We will use one-hot encoding — binary features



Setting of the set covering machine (SCM)

y; € {0,1} (case/control GWAS)
x;,; € {0,1} (one-hot encoding)

p > n with true model assumed to be very sparse



Setting of the set covering machine (SCM)

y; € {0,1} (case/control GWAS)
x;,; € {0,1} (one-hot encoding)

p > n with true model assumed to be very sparse

SCM of the features:

Fx) = N\ hi(x),

JER
where R € is the set of rules to learn.

Here a rules h; is the one-hot encoding of a SNP.



Setting of the set covering machine (SCM)

y; € {0,1} (case/control GWAS)
x;,; € {0,1} (one-hot encoding)

p > n with true model assumed to be very sparse

SCM of the features:

Fx) = N\ hi(x),
JER
where R € is the set of rules to learn.

Here a rules h; is the one-hot encoding of a SNP.

SCM only learns a of SNPs to explain the phenotype.



The set covering problem (1/2)

Haussler algorithm:

Assume there is a combination of features that perfectly classifies
the dataset: y = A, h;

How to find the sparsest possible combination of features?

Only consider rules that correctly classify all positive examples
(yi =1).
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The set covering problem (2/2)

Example: what conjunction of h;s equals y?

y hi hy hz hy

0 0 0 1 1

N 0 1 0 0 1
G 0011000
0 1 1 1 0

P 1 1 1 1 1
(positive 1 1 1 1 1

examples)
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The set covering problem (2/2)

Example: what conjunction of h;s equals y?
y hi  he hs hy
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The set covering problem (2/2)

Example: what conjunction of h;s equals y?

y hi  hy hy ha

0 0 0 1 1

0 1 0 0 1

N 0 1 10 O

0 1 1 1 0

1 1 1 1 1

P 1 1 1 1 1

Smallest number of sets {1}, {1,2},{2,3}

is {1,2,3,4}.

,{3,4} whose union

11



The set covering problem (2/2)

Example: what conjunction of h;s equals y?

y hi  hy hy ha
0 0 0 1 1
0 1 0 0 1
N 0 1 1 0 0
0 1 1 1 0
1 1 1 1 1
P 1 1 1 1 1
Smallest number of sets {1}, {1,2},{2,3},{3,4} whose union

is {1,2,3,4}.
This is the set cover problem (NP hard)
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The set covering problem (2/2)

Example: what conjunction of h;s equals y?

y hi  hy hy ha
0 0 0 1 1
0 1 0 0 1
N 0 1 1 0 0
0 1 1 1 0
1 1 1 1 1
P 1 1 1 1 1
Smallest number of sets {1}, {1,2},{2,3},{3,4} whose union

is {1,2,3,4}.
This is the set cover problem (NP hard)
We use a greedy approach
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Set covering machine

We choose the rule with maximum usefulness:

Un = |An| — q|Bnl,

Ay, negative examples correctly classified

By, : positive examples uncorrectly classified

12



Set covering machine

We choose the rule with maximum usefulness:

Un = |An| — q|Bnl,

Ay, negative examples correctly classified

By, : positive examples uncorrectly classified

We allow errors on positive examples

q controls this error
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Set covering machine: example

Example (with ¢ = 1):

y hi he hy hy
0 0 0 1 1
0 1 0 0 1
N 0 1 1 0 0
0 1 1 1 0
1 1 0 1 1
P 1 1 0 0 1
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y hi he hy hy

0 1 1

0 1 1
N 0 1 1

0 1 1 1

1 1 0 1 1
P 1 1 0 0 1

|Ap|

B 0 2 1 0

R {h4}

13



Set covering machine: example

Example (with ¢ = 1):

y hi he hy hy

0 1 1

0 1 1
N 0 1 1

0 1 1 1

1 1 0 1 1
P 1 1 0 0 1

|Ap|

B 0 2 1 0

R(—{h4}
N<—/\/\Ah4

13



Set covering machine: example

Example (with ¢ = 1):
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Set covering machine: example (2)

y hi hs hs
0 0 0 1
N 0 1 0 0
1 1 0 1
P 1 1 0 0
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Set covering machine: example (2)
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Set covering machine: example (2)

y hi hs hs

0 1
N 0 1

1 1 0 1
P 1 1 0 0

| Ap|

‘Bh| 0 2 1
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Stopping criteria

We have finished the job: N' =0
Early stopping: |R| > s with parameter s > 1

There remains only useless rules: |Ap| = |By| =0
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Computation time

Each greedy step is fast to compute:

> Let Zn be the (current) indices of the negative examples.
> |Anl = |Zn| = ez, @i if b is the presence rule of feature j

» Similar for |Bp|.
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Computation time

Each greedy step is fast to compute:

> Let Zn be the (current) indices of the negative examples.
> |Anl = |Zn| = ez, @i if b is the presence rule of feature j

» Similar for |Bp|.
Overall complexity O (|R|ns)

Limited memory usage
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Upper bound on the risk (1/2)

SCM is a sample compression algorithm
Given a model f learnt by an SCM, there exist
> a set of individuals Z € {1,--- ,n}
> a message string o containing additional information,

such that A can be reconstructed from Z.
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Upper bound on the risk (1/2)

SCM is a sample compression algorithm
Given a model f learnt by an SCM, there exist
> a set of individuals Z € {1,--- ,n}

> a message string o containing additional information,

such that A can be reconstructed from Z.

Then there exists a bound on the risk

R(h) = Eeyynn [Treomy] -
Marchand and Sokolova (2006) established that:

P (VS ~ D,Vh,R(h) < ¢e(h,S,6)) > 1§

» ¢ depends on Z and the of classif. errors made on S\ Z.
> ¢ does not depend on p.
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Upper bound on the risk (2/2)

Consequences:

The bound does not depend on p: theoretical performance
guarantee

It can be used for hyperparameter selection (Marchand et
Shawe-Taylor, 2002).
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Set covering machine
» learns a boolean conjunction of SNPs

» runs fast

» does not suffer from p > n

However there are other issues:

» Many SNPs can have same U},: which one to choose?

» Only conjunctions of SNPs
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THANK YOU
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Appendix: Sample compression bound

-1 — 2
e(h,S,8) =1—exp <nZ|r [log (|Z|> + log (m r| |>+

7| log(2N(2)) + log Q] )

: 70 (Jhl+1)% (r+1)%(| 2] +1)>
with Q = 7oAl )(2166)(\\ )7

where r is the number of classif. errors on S\ Z.
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