AN ITERATIVE REGULARIZED METHOD FOR SEGMENTATION WITH APPLICATIONS TO STATISTICS

Vivien Goepp

under the supervision of Pr. O. Bouaziz and Pr. G. Nuel

27 septembre 2019

MAP5, Université Paris Descartes

• Illustrative example : the linear model

$$oldsymbol{y} = oldsymbol{X}oldsymbol{eta}^* + oldsymbol{arepsilon},$$

with $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\beta^* \in \mathbb{R}^p$, and $\mathbb{E}[\varepsilon_i] = 0$.

• Illustrative example : the linear model

$$y = X\beta^* + \varepsilon,$$

with $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\beta^* \in \mathbb{R}^p$, and $\mathbb{E}[\varepsilon_i] = 0$.

• Ordinary least square estimate (OLS) :

$$\hat{oldsymbol{eta}}^{\mathsf{ols}} = \mathsf{argmin}_{oldsymbol{eta}} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|^2 = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{y}$$

• Illustrative example : the linear model

$$y = X\beta^* + \varepsilon,$$

with $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\beta^* \in \mathbb{R}^p$, and $\mathbb{E}[\varepsilon_i] = 0$.

• Ordinary least square estimate (OLS) :

$$\hat{\boldsymbol{\beta}}^{\mathsf{ols}} = \operatorname{argmin}_{\boldsymbol{\beta}} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|^2 = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

 $\rightarrow \mathsf{regularize} \ \hat{\boldsymbol{\beta}}^{\mathsf{ols}}$

Illustrative example : the linear model

$$y = X\beta^* + \varepsilon,$$

with $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\beta^* \in \mathbb{R}^p$, and $\mathbb{E}[\varepsilon_i] = 0$.

• Ordinary least square estimate (OLS) :

$$\hat{oldsymbol{eta}}^{\mathsf{ols}} = \mathsf{argmin}_{oldsymbol{eta}} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|^2 = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{y}$$

ightarrow regularize $\hat{oldsymbol{eta}}^{\mathsf{ols}}$

Predictive approach : Ridge regularization :

$$\operatorname{argmin}_{\boldsymbol{\beta}} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|^2 + \kappa \| \boldsymbol{\beta} \|^2$$

Explicative approach : Lasso regularization :

$$\operatorname{argmin}_{\boldsymbol{\beta}} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|^{2} + \kappa \| \boldsymbol{\beta} \|_{1}$$

1

- The adaptive ridge
- Segmentation in survival analysis
 - Bidimensional hazard rate estimation
 - Extension to age-period-cohort analysis
- Spline regression with knot selection

1. The adaptive ridge

Penalized likelihood-based variable selection methods

- The LASSO¹ estimate is sparse.
- Definition :

$$\boldsymbol{\beta}^{\text{lasso}} = \text{argmin}_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \kappa \|\boldsymbol{\beta}\|_1 \quad (\kappa > 0)$$

¹ :Tibshirani, R., Regression Shrinkage and Selection via the Lasso, *Journal of the Royal Statistical Society*, 1996.

Penalized likelihood-based variable selection methods

- The LASSO¹ estimate is sparse.
- Definition :

$$\boldsymbol{\beta}^{\text{lasso}} = \text{argmin}_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \kappa \|\boldsymbol{\beta}\|_1 \quad (\kappa > 0)$$

• Equivalent definition :

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2 \quad \text{s.t.} \quad \|\boldsymbol{\beta}\|_1 \leq t \quad (t > 0)$$

¹ :Tibshirani, R., Regression Shrinkage and Selection via the Lasso, *Journal of the Royal Statistical Society*, 1996.

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 \quad \text{s.t.} \quad \|\boldsymbol{\beta}\|_1 \le t \quad (t > 0)$$

Illustration with p = 2:

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 \quad \text{s.t.} \quad \|\boldsymbol{\beta}\|_1 \le t \quad (t > 0)$$

Illustration with p = 2:

Bridge penalty : L_q quasi-norm

 L_q norm penalty with q = 2/3

Bridge penalty : L_q quasi-norm

 L_q norm penalty with q = 2/3

Bridge penalty : L_q quasi-norm

 L_q norm penalty with q = 2/3

Approximating L_q norms with the L_2 norm

For any $q \in (0,2)$, we have² :

$$\frac{1}{q} \|\boldsymbol{\beta}\|_{q}^{q} = \inf_{\boldsymbol{w} \in \mathbb{R}_{+}^{d}} \left\{ \frac{1}{2} \sum_{j=1}^{d} w_{j} \beta_{j}^{2} + \frac{2-q}{2q} \sum_{j=1}^{d} |w_{j}|^{\frac{q}{q-2}} \right\}$$

² : Mairal, J, Bach, F, and Ponce, J., Sparse Modeling for Image and Vision Processing, Foundations and Trends in Computer Graphics and Vision, 2014.

Approximating L_q norms with the L_2 norm

For any $q \in (0,2)$, we have² :

$$\frac{1}{q} \|\boldsymbol{\beta}\|_{q}^{q} = \inf_{\boldsymbol{w} \in \mathbb{R}_{+}^{d}} \left\{ \frac{1}{2} \sum_{j=1}^{d} w_{j} \beta_{j}^{2} + \frac{2-q}{2q} \sum_{j=1}^{d} |w_{j}|^{\frac{q}{q-2}} \right\}$$

² : Mairal, J, Bach, F, and Ponce, J., Sparse Modeling for Image and Vision Processing, Foundations and Trends in Computer Graphics and Vision, 2014.

The problem becomes

$$\min_{\boldsymbol{\beta}} \left\{ \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2 + \kappa \|\boldsymbol{\beta}\|_q^q \right\} = \min_{\boldsymbol{\beta}} \inf_{\boldsymbol{w} \in \mathbb{R}^d_+} \left\{ \ell(\boldsymbol{\beta}, \boldsymbol{w}) \right\}$$

with

$$\ell(\boldsymbol{\beta}, \boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \frac{\kappa q}{2} \sum_j w_j \beta_j^2 + \frac{\kappa(2-q)}{2} \sum_j |w_j|^{\frac{q}{q-2}}$$

The L_q adaptive ridge : **minimize alternatively**

•
$$\operatorname{arg\,min}_{\boldsymbol{w}} \left\{ \ell(\boldsymbol{\beta}, \boldsymbol{w}) \right\} = (\left|\beta_j\right|^2)^{\frac{q-2}{2}}$$

•
$$\arg\min_{\boldsymbol{\beta}} \left\{ \ell(\boldsymbol{\beta}, \boldsymbol{w}) \right\} = \arg\min_{\boldsymbol{\beta}} \left\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right\|^2 + \frac{\kappa q}{2} \sum_j w_j \beta_j^2$$

The problem becomes

$$\min_{\boldsymbol{\beta}} \left\{ \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2 + \kappa \|\boldsymbol{\beta}\|_q^q \right\} = \min_{\boldsymbol{\beta}} \inf_{\boldsymbol{w} \in \mathbb{R}^d_+} \left\{ \ell(\boldsymbol{\beta}, \boldsymbol{w}) \right\}$$

with

$$\ell(\boldsymbol{\beta}, \boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \frac{\kappa q}{2} \sum_j w_j \beta_j^2 + \frac{\kappa(2-q)}{2} \sum_j |w_j|^{\frac{q}{q-2}}$$

The L_q adaptive ridge : **minimize alternatively**

•
$$\operatorname{arg\,min}_{\boldsymbol{w}} \left\{ \ell(\boldsymbol{\beta}, \boldsymbol{w}) \right\} = \left(|\beta_j|^2 + \delta^2 \right)^{\frac{q-2}{2}}$$

•
$$\arg\min_{\boldsymbol{\beta}} \left\{ \ell(\boldsymbol{\beta}, \boldsymbol{w}) \right\} = \arg\min_{\boldsymbol{\beta}} \left\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right\|^2 + \frac{\kappa q}{2} \sum_j w_j \beta_j^2$$

- The previous equation is defined when q = 0!
- The L_0 adaptive ridge estimate is the limit of the iterations :
 - $w_j \leftarrow (\beta_j^2 + \delta^2)^{-1}$
 - $\boldsymbol{\flat} \quad \boldsymbol{\beta} \leftarrow \operatorname{argmin}_{\boldsymbol{\beta}} \| \boldsymbol{y} \boldsymbol{X} \boldsymbol{\beta} \|^2 + \kappa \sum_j w_j \beta_j^2$
- But it does not correspond to the L₀ penalty.

The algorithm of the L₀ adaptive ridge

· It corresponds to the minimization of

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2 + \kappa \sum_j \log(\beta_j^2 + \delta^2)$$

using the MM optimization :

- Define $q(\beta_j|\beta_j^{(k)}) = \log(\beta_j^{(k)2} + \delta^2) + (\beta_j^2 \beta_j^{(k)2})$
- Iterate over $\beta^{(k+1)} \leftarrow \operatorname{argmin}_{\beta} q(\beta|\beta^{(k)})$.

Define $\ell(\beta) = -\log(L(\beta))$. L₀ adaptive ridge :

$$\begin{split} & \boldsymbol{w}^{(0)} \leftarrow \mathbf{1} \\ & \boldsymbol{k} \leftarrow 1 \\ & \mathbf{do} \\ & \boldsymbol{\beta}^{(k)} \leftarrow \mathrm{argmin}_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta}) + \kappa \sum_{j} w_{j}^{(k-1)} \beta_{j}^{(k)2} \\ & w_{j}^{(k)} \leftarrow (\beta_{j}^{(k)2} + \delta^{2})^{-1} \\ & \boldsymbol{k} \leftarrow k + 1 \\ & \mathbf{while} \ |w_{j}^{(k)} \beta_{j}^{(k)2} - 0.5| < 0.5 - \varepsilon \\ & \text{For every } j, \text{ we set } w_{j}^{(k)} \beta_{j}^{(k)2} \in \{0, 1\} \\ & \text{ If } w_{j}^{(k)} \beta_{j}^{(k)2} = 1 \text{, we set } \hat{\boldsymbol{\beta}}_{j} \leftarrow \hat{\boldsymbol{\beta}}_{j}^{\text{mle}} \end{split}$$

Fused L_0 adaptive ridge :

- Segmentation of β .
- Penalize over $(\beta_j \beta_{j-1})_j$.

Fused L₀ adaptive ridge :

- Segmentation of β .
- Penalize over $(\beta_j \beta_{j-1})_j$.

$$\begin{split} & \boldsymbol{w}^{(0)} \leftarrow \mathbf{1} \\ & k \leftarrow 1 \\ & \mathbf{do} \\ & \boldsymbol{\beta}^{(k)} \leftarrow \operatorname{argmin}_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta}) + \kappa \sum_{j} w_{j}^{(k-1)} (\boldsymbol{\beta}_{j}^{(k)} - \boldsymbol{\beta}_{j-1}^{(k)})^{2} \\ & w_{j}^{(k)} \leftarrow ((\boldsymbol{\beta}_{j}^{(k)} - \boldsymbol{\beta}_{j-1}^{(k)})^{2} + \delta^{2})^{-1} \\ & k \leftarrow k + 1 \\ & \text{while } |w_{j}^{(k)} (\boldsymbol{\beta}_{j}^{(k)} - \boldsymbol{\beta}_{j-1}^{(k)})^{2} - 0.5| < 0.5 - \varepsilon \end{split}$$

For every j, we set $w_j^{(k)}(\beta_j^{(k)} - \beta_{j-1}^{(k)})^2 \in \{0, 1\}$ On each segment : $\hat{\beta} \leftarrow \hat{\beta}^{mle}$

Comparison : smoothing vs fused L₀ adaptive ridge

Fused ridge : Each κ yields an *estimate*

 L_0 adaptive ridge segmentation : Each κ yields a *model* Selected papers :

- Grandvalet (1998) : Approximate L₁ norm
- Daubechies et al (2010) :
 - ► Study of the case *q* > 0 in sparse sensing
 - Speed of convergence is superlinear for q > 0.
- Frommlet and Nuel (2016) : Introduced L $_q$ ($q \ge 0$) Adaptive Ridge
- Liu et al (2017) : The L_0 adaptive ridge : empirical study in high dimension ($p \gg n$).
- Dai et al (2018) : The L₀ adaptive ridge regression has the oracle properties.

2. Application to survival analysis

2.1 Bidimensional estimation of the hazard rate

Motivating application : the SEER data

Study of mortality following breast cancer diagnosis

- US registry dataset of breast cancer
- Primary, unilateral, malignant and invasive cancers
- 1.2 million of patients, 60% of censoring
- The dates of diagnoses range from 1973 to 2014
- Variable of interest : the time from diagnosis until death (from cancer).

- Variable of interest : T^* , time before an event of interest.
- But we don't observe the T_i^* s, but

$$\begin{cases} T_i = \min\left(T_i^*, C_i\right) \\ \Delta_i = \mathbb{1}_{T_i = T_i^*}. \end{cases}$$

Right-censored data

- Variable of interest : T*, time before an event of interest.
- But we don't observe the T_i^* s, but

$$\begin{cases} T_i = \min\left(T_i^*, C_i\right), \\ \Delta_i = \mathbb{1}_{T_i = T_i^*}. \end{cases}$$

.

- T_i : observed time C_i : censoring
- U_i : covariate
- Aim : infer the hazard rate :

$$\lambda(t|u) = \lim_{\delta t \to 0} \frac{\mathbb{P}\left(t \le T^* \le t + \delta t | T^* > t, U = u\right)}{\delta t}$$

• **Our approach** : discretize λ :

$$\lambda(t|u) = \sum_{j=1}^{J} \sum_{k=1}^{K} \lambda_{j,k} I_{[c_{j-1},c_j) \times [d_{k-1},d_k)}(t,u)$$

with segmentation over $\lambda_{j,k}$.

Exhaustive statistics :

- $O_{j,k}$: number of observed events in rectangle (j,k)
- $R_{j,k}$: total time at risk in rectangle (j,k)The negative log-likelihood writes :

$$\ell_n(\eta) = \sum_{j=1}^J \sum_{k=1}^K \{ R_{j,k} \exp(\eta_{j,k}) - \eta_{j,k} O_{j,k} \} \text{ with } \log \lambda_{j,k} = \eta_{j,k}.$$

MLE is explicit : $\lambda_{j,k} = O_{j,k}/R_{j,k}$.

.

Exhaustive statistics :

• $O_{j,k}$: number of observed events in rectangle (j,k)

• $R_{j,k}$: total time at risk in rectangle (j,k)The negative log-likelihood writes :

$$\ell_n(\eta) = \sum_{j=1}^J \sum_{k=1}^K \{ R_{j,k} \exp(\eta_{j,k}) - \eta_{j,k} O_{j,k} \} \text{ with } \log \lambda_{j,k} = \eta_{j,k}.$$

MLE is explicit : $\lambda_{j,k} = O_{j,k}/R_{j,k}$. Bidimensional fused adaptive ridge :

$$\ell_{n}^{\mathsf{pen}}(\boldsymbol{\eta}) = \ell_{n}(\boldsymbol{\eta}) + \kappa \sum_{j,k} \left\{ v_{j,k} \left(\eta_{j+1,k} - \eta_{j,k} \right)^{2} + w_{j,k} \left(\eta_{j,k+1} - \eta_{j,k} \right)^{2} \right\}.$$

Segmentation into constant areas

(a) Representation of $v_{j,k} (\eta_{j+1,k} - \eta_{j,k})^2$ et $w_{j,k} (\eta_{j,k+1} - \eta_{j,k})^2$

(b) Corresponding graph

(c) Segmentation into connected components

Segmented estimate of the hazard rate

(Unpenalized) MLE

Segmented estimate of the hazard rate

(Unpenalized) MLE

L₂ Regularization

Results with segmentation

Fused Adaptive Ridge (greyscale)
2.2 Extension to age-period-cohort analysis

Age-period-cohort analysis

Age-period-cohort analysis

Key relation : period = age + cohort.

We want to infer the effects of age, period, and cohort.

Example : incidence of breast cancer :

- age effect : menopause
- cohort effect : carcinogenic baby food
- period effect : nuclear accident

We define one parameter vector for each effect : α , β et γ

1. In the AGE-PERIOD-COHORT 3 model, we assume

$$\log \lambda_{j,k} = \alpha_j + \beta_k + \gamma_{j+k-1}.$$

- Non-identifiable :
 - infer $\Delta^2 \alpha$, $\Delta^2 \beta$ et $\Delta^2 \gamma$.
 - or add a constraint to the model.
- 2. In the $\ensuremath{\mathsf{AGE}}\xspace{-}\ensuremath{\mathsf{COHORT}}\xspace^3$ model, we assume

$$\log \lambda_{j,k} = \alpha_j + \beta_k.$$

- Outer product structure \rightarrow regularizing
- Additive effect of the variables : strong a priori

 3 : Carstensen, B., Age-period-cohort models for the Lexis diagram, Statistics in medicine, 2007.

• We introduce an AGE-COHORT-INTERACTION model :

$$\log\left(\lambda_{j,k}\right) = \alpha_j + \beta_k + \delta_{j,k},$$

where $\delta_{j,k}$ is the interaction (with $\delta_{1,k} = \delta_{j,1} = 0$).

• We regularize over the differences of $\delta_{j,k}$:

$$\ell_n^{\mathsf{pen}}(\boldsymbol{\theta}) = \ell_n(\boldsymbol{\theta}) + \kappa \sum_{j,k} \left\{ v_{j,k} \left(\delta_{j+1,k} - \delta_{j,k} \right)^2 + w_{j,k} \left(\delta_{j,k+1} - \delta_{j,k} \right)^2 \right\}.$$

- Compromise between :
 - AC Model : $\kappa \to \infty$
 - MLE : $\kappa \to 0$

- J = 20 age intervals and K = 20 cohort intervals
- Sample the cohort uniformly
- Sample the age using the hazard rate $(\lambda_{j,k})$
- Uniform censoring over the age [75, 100]
- Infer (α, β, δ) in the ACI model.
- We represent medians over 100 repetitions

True hazard $\lambda_{j,k}^*$

Age-cohort model ($\log \lambda_{j,k} = \alpha_j + \beta_k$)

True hazard $\lambda_{j,k}^*$

ACI model : estimated $\hat{\lambda}_{j,k}$

Results with the ACI model

True interaction : $\delta_{j,k}^*$

ACI model : estimated $\hat{\delta}_{j,k}$

Results with the ACI model

3. Spline Regression with Automatic Knot Selection

Let $(x_i, y_i) \in \mathbb{R}$:

$$y_i = f(x_i) + \varepsilon_i, \quad 1 \le i \le n,$$

- f "smooth"
- ε_i i.i.d and centered
- $x_i \in [a, b]$

Aim : infer f.

- Define the spline order $q \ge 1$ and knots $(t_1, \cdots, t_k) \in [a, b]$.
- The estimate is the spline $\hat{f}(x) = \sum_{j=1}^{q+k} a_j B_{j,q}(x)$, where $B_{j,q}$ is the B-spline of order q.
- We minimize in $oldsymbol{a} \in \mathbb{R}^{q+k}$:

SS
$$(\boldsymbol{a}, \boldsymbol{t}) = \sum_{i=1}^{n} \left\{ y_i - \sum_{j=1}^{q+k} a_j B_{j,q}(x_i) \right\}^2 = \|\boldsymbol{y} - \boldsymbol{B}\boldsymbol{a}\|^2,$$

B-spline regression

 $(B_{j,q})_{j=1}^{k+q}$ is a basis of splines of order q.

B-splines bases with three knots : (0.25, 0.5, 0.75).

Knot placement

Where to place knots?

Uniform knots

Helmet crash test data⁵

⁵ : Silverman, B.W., Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting, *Journal of the Royal Statistical Society*, 1985.

Knot placement

Where to place knots?

Helmet crash test data⁵

⁵ : Silverman, B.W., Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting, *Journal of the Royal Statistical Society*, 1985.

Uniform = quantile knots

It is only based on the *x*-distribution of the points :

- Need to find optimal knot position
- Their optimal position is informative about breakpoints in f.

Two different approaches

- **Predictive approach** : place too many knots and regularize *a* : P-splines⁴.
- Explicative approach :
 - ► Jointly optimize w.r.t. t and a : Jupp (1978), Lindstrom (1999)
 - Monte-Carlo-based Approach : Denison et al. (1998), DiMatteo et al. (2001)

⁴ : Eilers, P. and Marx, D., Flexible Smoothing with B-splines and Penalties, *Statistical Science*, 1996.

A-Spline

Our approach :

- Set many initial knots
- · Successively remove the least relevant knots
- Using the fused adaptive ridge

Enforce the successive values of a to be equal.

$$\begin{split} \operatorname{PSS}\left(\boldsymbol{a},\boldsymbol{w}\right) &= \|\boldsymbol{y} - \boldsymbol{B}\boldsymbol{a}\|_{2}^{2} + \kappa \sum_{j=q+1}^{q+k} w_{j} \left(\Delta^{q} a_{j}\right)^{2}, \\ \text{with} \quad \Delta a_{j} &= a_{j} - a_{j-1} \quad \text{and} \quad \Delta^{q} = \Delta^{q-1} \circ \Delta \end{split}$$

A-Spline

Our approach :

- Set many initial knots
- · Successively remove the least relevant knots
- Using the fused adaptive ridge

Enforce the successive values of a to be equal.

$$PSS(\boldsymbol{a}, \boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{B}\boldsymbol{a}\|_{2}^{2} + \kappa \sum_{j=q+1}^{q+k} w_{j} (\Delta^{q} a_{j})^{2},$$

with $\Delta a_{j} = a_{j} - a_{j-1}$ and $\Delta^{q} = \Delta^{q-1} \circ \Delta$

Explicit iteration step :

$$\begin{aligned} \operatorname{argmin}_{\boldsymbol{a}} \operatorname{PSS}(\boldsymbol{a}, \boldsymbol{w}) &= (\boldsymbol{B}^T \boldsymbol{B} + \kappa \boldsymbol{D}_{\boldsymbol{q}}^T \boldsymbol{W} \boldsymbol{D}_{\boldsymbol{q}})^{-1} \boldsymbol{B}^T \boldsymbol{y} \\ & \text{with} \quad \boldsymbol{D}_1 = \begin{bmatrix} 1 & -1 & & \\ & 1 & -1 & \\ & \ddots & \ddots & \\ & & & 1 & -1 \end{bmatrix} \end{aligned}$$

Illustration on simulated data :

- $f(x) = \sin(6\pi x) * 0.5 + 0.5$
- $\varepsilon \sim \mathcal{N}(0, 0.15^2)$ and n = 200.
- q = 4
- 40 uniform initial knots

A-splines

Results on real data : detecting changes in mean

aCGH profile of bladder tumor samples⁶ :

⁶ : Stransky, N. et al, Regional Copy Number–Independent Deregulation of Transcription in Cancer, *Nature Genetics*, 2006.

⁷ : Killick, R. et al, Optimal detection of changepoints with a linear computational cost, *Journal of the American Statistical Association*, 2006.

Results on real data : detecting changes in mean

aCGH profile of bladder tumor samples⁶ :

⁶ : Stransky, N. et al, Regional Copy Number–Independent Deregulation of Transcription in Cancer, *Nature Genetics*, 2006.

⁷ : Killick, R. et al, Optimal detection of changepoints with a linear computational cost, *Journal of the American Statistical Association*, 2006.

Results on real data : detecting changes in mean

aCGH profile of bladder tumor samples⁶ :

⁶ : Stransky, N. et al, Regional Copy Number–Independent Deregulation of Transcription in Cancer, *Nature Genetics*, 2006.

⁷ : Killick, R. et al, Optimal detection of changepoints with a linear computational cost, *Journal of the American Statistical Association*, 2006.

Results on real data : detecting changes of slope

Light measurement data set⁸ :

⁸ : Sigrist, M. et al, Air monitoring by spectroscopic techniques, *John Wiley & Sons*, 1994.

⁹ : Friedman ; J., Multivariate Adaptive Regression Splines, *Journal of the American Statistical Association*, 1991.

Results on real data : detecting changes of slope

Light measurement data set⁸ :

⁸ : Sigrist, M. et al, Air monitoring by spectroscopic techniques, *John Wiley & Sons*, 1994.

⁹ : Friedman ; J., Multivariate Adaptive Regression Splines, *Journal of the American Statistical Association*, 1991.

Results on real data : detecting changes of slope

Light measurement data set⁸ :

⁸ : Sigrist, M. et al, Air monitoring by spectroscopic techniques, *John Wiley & Sons*, 1994.

⁹ : Friedman ; J., Multivariate Adaptive Regression Splines, *Journal of the American Statistical Association*, 1991.

Results on real data : splines of higher order

Number of disasters in coal mines in the UK¹⁰ :

¹⁰: Diggle, P and Marron, J., Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation, JASA, 1988.

Results on real data : splines of higher order

Number of disasters in coal mines in the UK^{10} :

¹⁰: Diggle, P and Marron, J., Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation, JASA, 1988.

Results on real data : splines of higher order

Number of disasters in coal mines in the UK¹⁰ :

Poisson model : $\mathbb{E}[\boldsymbol{y}|\boldsymbol{x}] = \boldsymbol{\mu}$ with $\hat{\boldsymbol{\mu}} = \exp(\boldsymbol{B}\hat{\boldsymbol{a}})$

¹⁰ : Diggle, P and Marron, J., Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation, JASA, 1988.

Comparison of mean squarred error (MSE) on simulated data :

Comparison of mean squarred error (MSE) on simulated data :

45

Conclusion :

- Papers :
 - Bidimensional estimation of the hazard rate [submitted]
 - Spline regression with automatic knot selection [submitted]
 - Age-cohort-interaction model [under preparation]
 - Segmentation of geographic-based data [under preparation]
- Communications :
 - Conference talks : SAM 2017, IWAP 2018
 - Conference posters : SMPGD 2018, IBC 2018, SMPGD 2019
 - Three invited seminars
- Three R packages : hazreg, aspline, and graphseg.

Perspectives :

- Study of consistency of the segmentation (ACI model).
- Use of splines in age-period-cohort models.
- Application to study of evolution of mortality causes in France.
Annex 1 : Adaptive ridge and MM optimization

Local Quadratic Approximation : Solve iteratively

$$\min_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta}) + \kappa \sum_{j} p(|\beta_{j}|),$$

where p is even, concave on \mathbb{R}_+ , and nondecreasing.

$$p(|\beta_j^{(k)}|) + (\beta_j^2 - \beta_j^{(k)2}) \frac{p'(|\beta_j^{(k)}|)}{|\beta_j^{(k)}|} \succeq p(|\beta_j|)$$

MM Optimization :

- $\min_{\beta} \ell^{\mathsf{pen}}(\beta|\beta^{(k)})$
- Update $oldsymbol{eta}^{(k)}$ to $oldsymbol{eta}^{(k+1)}$

The sequence $\beta^{(k)}$ tends to a local minimum of $\ell^{\text{pen}}(\beta)$.

Fan, J. and Li, R., Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, *Journal of the American Statistical Association*, 1996.

When $p(|\beta_j|) = \log(\beta_j^2 + \delta^2)$, this is the L₀ adaptive ridge.

The Adaptive Lasso comes from the LLA of a penalty.

$$p(|\beta_j|) + (|\beta_j| - |\beta_j^{(k)}|)p'(|\beta_j^{(k)}|) \succeq p(|\beta_j|)$$

Annex 2 : Connexion with adaptive lasso (2)

Example : with $p(|\beta_j|) = \log(|\beta_j|)$.

- Each iteration is sparse
- Zou and Li (2008) offer to stop at one iteration

Compared with the adaptive ridge :

- It takes less iterations to converge.
- Each iteration is slower : gradient methods versus newton methods.

- Problem : choose between M models $\mathcal{M}_1, \ldots, \mathcal{M}_M$ of dimensions q_1, \ldots, q_M .
- Solution : maximize $\mathbb{P}(\mathcal{M}_m | \mathbf{R}, \mathbf{O}) \propto \mathbb{P}(\mathbf{R}, \mathbf{O} | \mathcal{M}_m) \pi(\mathcal{M}_m)$.
- By approximation :

 $-2\log\left(\mathbb{P}(\mathcal{M}_m|\mathbf{R}, \mathbf{O})\right) = 2\ell_n(\widehat{\boldsymbol{\eta}}_m) + q_m\log n - 2\log \pi(\mathcal{M}_m) + \mathcal{O}_{\mathbb{P}}(1)$

• We must choose the prior *a priori* $\pi(\mathcal{M}_m)$

BIC : $\pi(\mathcal{M}_m) = 1$ All the \mathcal{M}_m are equiprobable $\mathsf{EBIC}_0: \mathbb{P}\left(\mathcal{M}_m \in \mathcal{M}_{[q_m]}\right) = 1$ All the $\mathcal{M}_{[q_m]}$ are equiprobable

 $\mathcal{M}_{[q_m]}$ is the set of models with q_m parameters

We compare different model selection criteria :

1.
$$\mathsf{BIC}(m) = 2\ell_n(\widehat{\boldsymbol{\eta}}_m) + q_m\log n$$

2.
$$\mathsf{EBIC}_0(m) = 2\ell_n(\widehat{\eta}_m) + q_m \log n + 2\log \binom{JK}{q_m}$$

3. AIC
$$(m) = 2\ell_n(\widehat{\boldsymbol{\eta}}_m) + 2q_m$$

4. K-fold Cross validation (CV)